
The

Software Factory

A LINKAGE EDITOR/LOADER FOR THE APPLE I I

BY DON WORTH

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

THE SOFTWARE FACTORY MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY,
PERFORMANCE, MERa-lANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE SOFTWARE
FACTORY SOFTWARE IS SOLD OR LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT THE SOFTWARE FACTORY, ITS DISTRIBUTOR, OR ITS RETAILER)
ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN
IF THE SOFTWARE FACTORY HAS BEEN ADVISED OF THE POSSIBILITY OF SUQ-l DAMAGES. SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY TO YOU.

This manual and the associated software is copyrighted. Al I rights are reserved.
This document may not, in whole or in part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form without the
prior consent, in writing, from The Software Factory.

Copyright (C) 1980 by The Software Factory. Al I rights reserved.

TABLE OF CONTENTS

ASSUMPTIONS AND RECOMMENDATIONS ••••••••••••••••••••••••• 1
l J NKAGE ED J TORS a • • a • • • • e • e • • e • 111 • • • e • • e • • e • • e • e e e • o e e • e • e 2
AN EXAMPLE. • 3
WRITING ASSEMBLER PROGRAMS WITH LINKER •••••••••••••••••• 5
LJSJNG LINKERee•••e 8
LINKER ERROR MESSAGES.................................... 11
LINKER SUBROUTINE LIBRARY ••••••••••••••••••••••••• ." ••••• 12
ADV-ANCED TOP I CS • •••••••••••••••••••••••• 1111 • • • • • • • • • • • • • • • 20

APPENDIX A - DEMO PROGRAM LISTING ••••••••••••••••••••••• 24
APPENDIX B - PROBLEMS OR QUESTIONS •••••••••••••••••••••• 28
APPENDIX C - OBJECT MODULE STRUCTURE SUMMARY •••••••••••• 29

ASSUMPTIONS AND RECOMMENDATIONS

LINKER requires the fol lowing as a minimum:

32K APPLE I I or APPLE I I PLUS
DISK 11
some form of assembler

LINKER is compatable with al I versions of DOS up to and including 3.2.1. It should be
noted that the above requirements are minimal; a good assembler is very important to
productivity, although the Integer basic ROM mini-assembler can be used. Throughout
this document, examp I es of assemb I er I anguage programs are in the TED I I + assemb I er
(from the WOZPAK) format. Defined below are the pseudo-ops used by TED I I +:

ORG Sets address where program wil I run
EQU Equates a label to a numeric value
OS Reserves space without assigning It a value
DA Stuffs address of a label into memory CLO/HI)
OW Stuffs a byte value Into memory
HEX Stuffs several bytes of hex into memory
ASC Stuffs several bytes of ASCII into memory

You would be wel I advised to choose an assembler which wil I support at least the
functions 1 lsted above (perhaps with different names).

Another consideration Is storage of the assembler output. To use LINKER you must
store the memory image created by your assembler as a binary file with a name ending·
in ".OBJ". Although you can do this by using the DOS BSAVE command, you must then
know the length and memory location of the object code. Some assemblers wil I
automatically do this for you and are therefor easier to use with LINKER.

At the Software Factory we use the Programma International ful I screen editor (PIE),
and a modified form of the TED assembler for program development.

LINKAGE EDITORS

In computing, the process of taking a program from Initial keying-in to final_
execution is called the development cycle. This cycle Is diagrammed In figure 1.

KEYBOARD

EDITOR

ASSEMBLER

LINKER

EXECUTABLE
PROGRAM
"-.___/

FIGURE 1.

2

The cycle begins with the programmer keying In his source statements. These are
accepted by a program called an EDITOR. The editor usually stores the completed
source program as a file on the floppy disk. At the next step, an ASSEMBLER is
Invoked to translate the source statements into binary machine code. This machine
or 11objec-t11 code Is stored on disk as an "object module".

Before LINKER became avai I able, most APPLE program development ended here. An
object module was loaded and run at the location for which it was assembled, using
the DOS BRUN command. It had to be completely self-sufficient (not requiring any
outside subroutines except for those in absolute locations, such as ROM) or it had
to be manually combined with other routines at fixed addresses.

With LINKER, however, another step is added, following assembly. The I inkage edit
step combines and relocates one or more object modules together to form a final,
executable module or "load module". LINKER allows the programmer to specify, at
I inkage edit time, where in memory his module wll I execute, and relocates the in.put
object modules as necessary, updating their call statements as the locations of
their subroutines shift. Once LINKER has finished loading and "connecting" al I the
object modules, the memory image can be BSAVEd as an executable module or CALLed
Immediately. If an error occurs in execution, the cycle repeats, starting with the
use of th.e ed I tor to correct the error.

AN EXAMPLE

Suppose you are writing a program cal led "DEMO" which wil I act as a musical
calculator. It will ask the user for two numbers, multiply them together, and print
the answer, producing a tone for each digit printed. Using LINKER and its
associated I ibrary of subroutines to do this demonstrates their value as a
development aid. To see how the demo program works, BRUN DEMO on the LINKER
distribution diskette. A source I !sting of the DEMO program is given in APPENDIX A.
DEMO calls seven I ibrary subroutines:

STOA
ATOS
DELAY
PRINT
MULT
TONE
EXIT

Converts an Internal binary number into printable ASCII numeric digits.
Converts ASCII numeric digits, as typed by the user, to a binary number.
Waits a period of time or unti I a keypush before returning to caller.
Prints one or more I ines of ASCII text.
Multi pl !es two numbers together.
Produces a tone of a given frequency and duration on the APPLE's speaker.
Exits to BASIC.

In addition, six subroutines in the monitor ROM are called:

GET
COUT
CEOS
HOME
TEXT
VTAB

$FD6A
$FDED
$FC42
$FC58
$FB39
$FB58

Gets an input I ine from the keyboard
Prints a single character
Clears to end of screen
Erases screen
Sets TEXT mode
Does a vertical tab

3

Since the above six subroutines are at fixed or "absolute" locations, their
addresses are assembled into DEMO directly. The other seven wil I be added to DEMO
by LINKER later.

When the program in APPENDIX A is assembled and stored on diskette (using BSAVE) as
an object module file (DEMO.OBJ) LINKER may be run. The results of such a run are
shown in Figure 2. A BSAVE command Is issued to save the final DEMO module and a BRUN
executes It. Notice that al I of the library subroutines required by DEMO have been
added to make the fl na I I cad modu I e.

>BRUN LINKER

L I N K E R - V2.0

COPYRIGHT 1980 THE SOFTWARE FACTORY

(LINKER AT A$1000)

LOW ADDRESS (IN HEX) ?800
HIGH ADDRESS (IN HEX) ?1000
LOAD DOWN FROM HI ?N
MODULES ON PAGE BOUNDARIES ?N

LOAD WHAT MODULE ?DEMO

LOAD WHAT MODULE ?

MODULE A$ USE

DEMO 0800 0
BTOA 098B l
ATOB 09FC l
DELAY OA4C l
PRINT OA6F l
MULT OAA6 1
TONE OAD7 l
EXIT OBOl 1

TOTAL A$0800,L$0331

>

FIGURE 2.

4

WRITING ASSEMBLER PROGRAMS FOR USE WITH LINKER

Assembler language modules processed by LINKER must conform to certain conventions.
This practice allows the use of any assembler with LINKER rather than requiring a
special assembler which can put out relocation and global symbol dictionaries.
Although these conventions are fairly easy to fol low, it is vital that they be
carefully adhered to in order to avoid problems at I ink or execution time.

A typical object module consists of a single named subroutine or main program,
called a "Control Section" CCSECT) •. A CSECT must begin with a 15 byte header and
end with a two byte end-of-section marker. This is so that LINKER wil I know th~
name and size of each CSECT it processes. A typical header definition (from the
DEMO program) is shown below: ·

+o JMP
+3 ASC
+11 HEX
+13 HEX

A CSECT always

HEX

DEMO
"DEMO
0000
0000

ends with:

FFFO

II

JMP TO ENTRY POINT
8 CHARACTER CSECT NAME
RESERVED FOR LINKER'S •••
••• USE. MUST BE O.

$FFFO END OF CSECT MARKER

Within a
references
know what
module.

CSECT~ al I instructions, data, address constants, and global subroutine
must be collected into separate segments. This is so that LINKER wil I
it is deal Ing with at al I times during the relocation of the object

Al I instructions within the CSECT must be contained within one or more instruction
segments. Each instruction segment must begin with the fol lowing two byte header:

HEX FFF1 $FFF1 INSTRUCTION SEGMENT

This tel Is LINKER that what follows is a segment of pure instructions. No embedded
data is allowed (except as noted below) since LINKER must relocate all absolute JMPs
or JSRs (etc.) to labels within the CSECT for the final location of the object
module. If data must appear within an instruction segment (as with an lnline argument
I ist for PRINT) it must be preceeded by a $DA and end with a $00 byte.

5

Example:

JSR
HEX
ASC
HEX
HEX
LOA

PRINT
DA
"D E M 0"
SD
00
#"?

CALL PRINT SUBROUTINE
STARTING EMBEDDED DATA
DATA TO PASS TO PRINT
CARRIAGE RETURN
END OF EMBEDDED DATA
CONTINUE WITH NEXT INSTRUCTION

Collect all raw data into data segments. This prevents LINKER from trying to
relocate anything imbedded in it that might accidentally look I ike an address or
instruction. Each data segment must beg.I n with the fo I I owing two byte header:

HEX FFF4 $FFF4 DATA SEGMENT

You must insure that the data does not contain anything which might be interpreted
as a val id segment header ($FFFO-$FFF4).

Address constant segments contain one or more two byte address constants which wil I
require relocation. Address constants which are fixed values (such as ROM addresses
or $0000) need not be included, since they wil I not require relocation. Addresses
which are labels In the CSECT being assembled should be included, however. The
fol lowing header marks the beginning of an address constant segment:

HEX FFF2 $FFF2 ADCON SEGMENT

Global symbol reference segments contain JMP instructions to be "tied" to external
CSECTS. Thus, if you are cal I Ing PRINT from DEMO, you are referencing the globally
known symbol "PRINT" from the DEMO CSECT. Global reference segments begin with:

HEX FFF3 $FFF3 GLOBALS SEGMENT

Each global reference has the form:

PR INT JMP
ASC

$0000
"PR I NT "

LINKER WILL FILL IN ADDRESS
8 BYTE GLOBAL NAME

6

You should take heed of the following warnings:

1) Do not make references to labels in your program with immediate operands, such
as:

ME LOA
STA
LOA
STA

#<ME
POINT
#>ME
POINT+1

PUT ADDRESS OF ME •••
INTO PO INT

LINKER w 11 I not detect these and they w i I I not be r_e I ocated. Use address constants
instead, viz:

ME LOA
STA
LOA
STA

HEX
MEPTR DA

MEPTR
POINT
MEPTR+1
POINT+1

PUT ADDRESS OF ME •••
INTO PO INT

CREST OF PROGRAM)

FFF2
M:

ADCON SEGMENT
ADDRESS OF 'ME'

2) Avoid moving the program counter forward in an assembly, skipping an area in the
object module:

BUFF DS

or

BUFF=*
*=BUFF+256

256

You may be skipping over "garbage" which looks like segmen-t headers. If you must
use this practice, first zero the memory which wll I be used to hold the assembled
object code.

3) Avoid data
sequences I ike
affect LINKER.

sequences which look I ike segment headers ($FFFO-$FFF4). Data
this appearing after execution has started, of course, wil I not

7

USING LINKER

To Invoke LINKER, boot DOS and type:

BRUN LINKER

The following screen wll I appear:

L I N K E R - V2.0
COPYRIGHT 1980 THE SOFTWARE FACTORY

CLINKER AT A$1000)

LOW ADDRESS C IN HEX) ?

Check the LINKER's location Cln this case $1000). It your program is to reside in
the same general area, you must first relink LINKER itself to another "safe" place
in memory. LINKER.wil I not work very wel I It you have it load your program on top
of itself! To avoid this, pick an area of memory you are not using about $1000
long, and follow the Instructions below using LINKER as the name of the module to
load. Then run the new LINKER to link your module.

Now enter the hex address of the first byte In memory for the output load module
(800, for example).

You wil I now be asked:

H I GH ADDRESS C IN HEX) ?

Give the address of the highest byte In memory C+l) which may be used to bui Id the
module. Note that the area between the low and high addresses must be large enough
to contain the completed load module as wel I as the LINKER's global symbol
dictionary. For safety's sake, assign an area as large as you can Conly what Is
needed w. i I I be used) but at I east as I arge as the f i na I I cad modu I e p I us 10 per cent
for the dictionary. Let's assume you entered 1000 for this example.

8

The next question is:

LOAD DOWN FROM HI ?

If you want the normal way of loading a module (that is from the low address upward
through memory) just hit the return key (or enter "N"). If, on the other hand, you
want to pack your module up against some high I imit (like HIMEM, tor example) and
you don't care where it starts in memory (just where it ends), respond "Y" to the
question.· For our example, we wi 11 assume you respond with a 11N11 •

LINKER now asks:

MODULES ON PAGE BOUNDARIES ?

If you want al I the object modules in your final load module packed together with no
space between them, hit return or "N". If it is important to your program that each
CSECT starts on an even 256 byte "page" boundary (for timing or whatever), reply
with a 11Y11 • Note that forcing page boundaries wi 11 use more memory for the load
modu I e. In our examp I e, we w i 11 rep I y 11 N11 •

At this point, LINKER asks for the module you want to I ink:

LOAD WHAT MODULE ?

Insert the disketTe containing the first object module file (usually your 'main'
program) in the drive you used to BRUN LINKER. Enter the name of the CSECT (do not
include 11 .0BJ") and hit return. LINKER will proceed to load your object module,
relocating It to its new location, then it wll I search the diskette for each of the
subroutines called by your main program and each of their subroutines, loading and
relocating them too. If LINKER can not find an object module file on the diskette;
it makes an internal notation of this, but continues unti I al I modules that can be
loaded are loaded. LINKER then asks tor the name of the next module you wish to
load. Ordinarily, it al I the modules needed were present on the diskette you used,

9

you will just hit return, telling LINKER that the module is complete. If you wish
to have LINKER search another diskette for modules it needs, switch diskettes, type
the name of any CSECT in your program (your main program again, for example) and hit
return. When LINKER has searched al I your diskettes, enter a null name, as
described above, to exit LINKER. In our example, we entered DEMO as the name of the
module to load.

As it exits back to BASIC, LINKER produces a memory map of your load module which
might look I Ike this:

MODULE A$ USE

DEMO
STOA
ATOS
DELAY
PRINT
MULT
TONE
EXIT
TOTAL

>

0800 0
0988 1
09FC 1
OA4C 1
OA6F 1
OAA6 1
OAD7 1
0801 1

A$0800, L$0331

The first object module LINKER loaded, in this example, was DEMO. It was loaded at
the low memory address you specified ($0800). The 0 under USE means that this
module was 1 used 1 by no other object module as a subroutine, since it is the 1main 1

program. DEMO makes references to seven other CSECTS; STOA, ATOS, DELAY, PRINT,
MULT, TONE and EXIT. These were loaded one by one right after DEMO in memory and
their start i ng addresses are I i sted. I n each case they were used on I y by DEMO so
their use count is 1 • l f LINKER was unab I e to find a CSE CT its name w i I I appear in
the I ist with 1 ???? 1 for a starting address. (ff you try to run the completed load
module and it calls the missing CSECT execution wil I go to location $0000.) Finally,
LINKER gives the lowest address and the total length of the module. To save the
finished executable program you could type:

BSAVE DEMO,A$800,L$331

and to run it you would type:

BRUN DEMO

10

LINKER ERROR MESSAGES

LINKER can produce the following error messages while loading your module.

INSUFFICIENT MEMORY - The space you al I oted In memory for the I oad modu I e (I ow
address to high address) was not big enough for both the module and the global
symbol dic"tionary. Either lower the low address or raise the high address.

BAD OBJECT MODULE STRUCTURE - One of the object" modules LINKER was processing
d Id not conform to the convent! ons exp I ai ned In the sect I on WRITING · ASSEMBLER
PROGRAMS FOR USE WITH LINKER. It Is not possible for LINKER to tel I you which
one It is, but you can try using LINKER to load each CSECT one by one by name
to zero in on the culprit.

DISK 1/0 ERROR - This Is a general catch-al I error message for any problem
having to do with the disk. It could mean you were out of DOS buffers, the
object module file ended prematurely, or that a real 1/0 error occured.

If '10U accidentally hit reset while running LINKER you may be able to recover
what you were doing by calling it at Its starting point (normally $1000 unless
you've relinked It).

There are at" least two ways you can drive LINKER "crazy". If LINKER seems to
go into a loop reading the diskette and then finally comes back with an
insufficieni" memory message, its possible that It was trying to load an object
module whose DOS file name did not match any of the CSECT names within it.
Always make sure that the name of an object module flle Is the same as one of
the programs it contains. If LINKER just freezes up or produces random kinds
of garbage or error messages it is I ikely that you have tried to link your
module over the top of LINKER itself. Check its locai"lon and move It to
another part" of memory (by relinking it) if necessary.

11

LINKER SUBROUTINE LIBRARY

This section describes the subroutines provided for your use on the LINKER
distribution diskette. For an example of their use, see APPENDIX A.

PRINT - L$37

This routine al lows you to easily print text on the screen (or whatever the output
device is) just I ike you would in BASIC.

INPUT: Simply follow the JSR to PRINT with the text to be printed, preceeded with a
$DA and ended with a $00.

JSR PRINT
HEX DA
ASC "LINE 1"
HEX 8D
ASC "LI NE 2"

For examp I e:
CALL PRINT SUBROUT1NE
EMBEDDED DATA STARTS

CARRIAGE RETURN

HEX 8DOO CARRIAGE RETURN/END OF DATA
Notice that unless you include carriage returns ($8D) PRINT wil I not put any In.
The $DA and the $00 are not printed. Execution continues with the instruction
immediately following the $00.

USES : $3C ~ $3D

CALLS: $FDED

ATOS - L$50

Converts an ASCII number, as typed in from the keyboard for instance, into its
binary equivalent so it can be operated upon arithmetically.

INPUT: $3C/$3D contains the address CLO/HI format) of the first numeric digit of
the ASCII string. ATOS wil I convert up to 5 digits or until a non numeric is
encountered.

OUTPUT: $3E/$3F wil I contain the positive binary result CLO/HI). The Y register
wil I contain the number of val id digits converted.

USES: $3C through $41

12

STOA - L$71

STOA converts binary numbers to ASCII digits for printing. This routine is the
reverse of ATOS.

INPUT: The X register should contain the left fil I character ($AO for blank
the Y and A registers contain the number to be converted CLO/Hf), and
contains the address of the 5 byte output area.

f i 11) ,
$3C/$3D

OUTPUT: The output area wil I contain the number, right adjusted and left filled
with the fil I character.

USES: $3C through $41

FORMAT - L$3S

This routine performs the same function as STOA (in fact it calls STOA) except it
prints the number after converting it.

INPUT: The Y and A register should contain the number to be converted (LO/HI).

OUTPUT:
adjusted.

Prints 5 characters, left filled with blanks, numeric digits right

USES: $3C through $41 and $200-$204

CALLS: STOA, $FDED

EXIT - L$30

When you want your program to end its execution in a "nice" way, JMP to EXIT. EXIT
wil I give control to the active BASIC (under DOS if it is active). There are no
input arguments and no zero page bytes are used.

13

DELAY - L$23

You can call this routine to cause your APPLE to "spin its wheels" for a period of
time while a display Is on the screen or to slow down some program's operation. You
can set the delay period for anything from 1/10 of a second to 25 seconds in 1/10 of
a second Intervals. If, prior to the end of the delay period, the APPLE user hits a
key, DELAY wil I return with the time remaining in the A register.

INPUT: A register contains the number of tenths of seconds to delay before
returning (0-255, 0=256). For more than 25.6 seconds, call DELAY in a loop.

OUTPUT: A register contains the number of tenths of seconds of the period which
have not expired. The zero flag is set so you can disable the keystroke feature by
BNEing back to the JSR to DELAY.

CALLS: $FCA8

TONE - L$2A

Cal I Ing this subroutine with a frequency and duration C0-255) you can generate
simple tones on the APPLE speaker.

INPUT: $3C contains the frequency C0-255) and $3D contains the duration (0-255).

USES: $3C~ $3D

RND - L$68

This is a fairly uniform random number generator for generating random integers. It
works very much like the RND function in Integer BASIC.

INPUT: Y and A registers contain the highest value the random number can be plus
one CLO/HI).

OUTPUT: Y and A registers contain the random number (0 to HIGHVALUE-1).

USES: $50 through $55 and $4E/$4F

CALLS: MULT
14

OPEN - L$13C

Similar in function to the OPEN command in DOS. You should cal I this subroutine
whenever you want to start reading or writing a text file on the disk. OPEN
searches the disk for the proper file, creating it if necessary, and positions to
the beginning of the file.

INPUT: Y and A registers contain the address (LO/HI) of a seven byte parameter
I ist:

Y/A --> +o,+1 Address of a 30 byte file name (LO/HI)
+2,+3 Record length or 0,0
+4 ·vo I ume number or 0
+5 Drive to use (0 for last used)
+6 Slot to use (0 for last used)

The X register should contain either $00 to indicate that the file may be created if
it doesn't already exist, or $80 to indicate that it must exist already.

OUTPUT: Unless no DOS buffers were free, the Y and A registers wil I contain the
address (LO/HI) of an al located DOS buffer for the file. You must save this since
it is a required input to POSN, READ, and WRITE, and you must CLOSE it when you are
done to free the buffer.
The carry flag is set if an error occured and the X register contains one of the
following error codes:

0 NO ERRORS
4 WRITE PROTECTED
5 END OF DATA
6 FILE NOT FOUND
7 VOLUME MISMATCH
8 1/0 ERROR
9 DISK FULL
10 FILE LOCKED
12 NO BUFFERS AVAILABLE
13 NOT A TEXT FILE

if return code 12 occurs, Y/A wil I contain zeros but CLOSE may be called.

USES: $3C through $45 and DOS ZPAGE.

CALLS: FBUFF, POSN, FIO

FIO - Incorporated into OPEN.OBJ

This routine Is the linkage subroutine to DOS and is cal led by OPEN, CLOSE, READ,
WRITE, and POSN. It should not be called directly.

15

CLOSE - L$40

For every OPEN cal I there must be an eventua I CLOSE ca I I to do any ti na I updates on
the diskette and free the file buffer.

INPUT: Y and A registers contain the address of the open file buffer CLO/HI) as
returned by OPEN.

USES: $3C through $44 and DOS ZPAGE.

CALLS: FIO

POSN/READ/WRITE - L$AC

These three subroutines are all part of the object module, POSN.OBJ. POSN may be
called to position the flle pointer Cthe location of the next byte to be read or
written). READ is called to read one or more bytes Into an area in memory. WRITE Is
called to write a number of bytes from an area of memory.

INPUT: The cal I ing sequence for al I three subroutines is similar. Y and A
registers contain the address CLO/Hf) of a six byte parameter I ist:

Y/A ~> +o,+1 Address of open DOS buffer
+2,+3 Relative record number for POSN or •••

Length to READ or WRITE CLO/HI)
+4,+5 Byte offset for POSN or •••

The data address CLO/Hf) for READ/WRITE

OUTPUT: The carry flag is set if an error occured and the X register contains a
return code as defined under the OPEN subroutine.

USES: $3C through $45 and DOS ZPAGE.

CALLS: FIO

16

FBUFF - L$38

This routine is called by OPEN to locate a free DOS buffer. If you wish to provide
your own butters to OPEN you may replace FBUFF.OBJ with your own version. DOS
buffers have the following format:

+o 30 byte file name area
+30 address of 45 byte workarea
+32 address of 256 byte T/S I ist area
+34 address of 256 byte data area
+36 address of next buffer on chain

If you are content to use OOS 1s buffers you may ignore FBUFF.

INPUT: none

OUTPUT: The carry flag is set lf no free buffer can be found. Otherwise, $3C/$3D.
contain the address of the free buffer.

USES : $3C, $3D

MULT - L$31

This routine is s imi I ar to the one provided in the NON-AUTOSTART ROM. It is
provided so that your programs can work with the AUTOSTART ROM when a multiply
routine is needed. Only positive numbers are used.

INPUT: $50/$51/$52/$53
contains the other number.

contains a 4 byte binary number CLO to HI)
In general $52/$53 should contain zeros.

and

OUTPUT: $50/$51/$52/$53 contains the 4 byte result of the multi pl icatlon.

USES: $50 through $55.

0 I VO - L$33

Divides one number into another. Only positive numbers are used.

$54/$55

INPUT: $50/ $51 I $52/ $53 conta Ins the dividend and $54/ $55 contains the divisor.

OUTPUT: $50/$51/$52/$53 contains the quotient.

USES: $50 through $55.
17

LKED - L$5D 1

You may cal I the functional part of LINKER as a subroutine if you
dynamically load, relocate, and link programs during the execution of your
This rs especi a 11 y usefu I if you want to do over I ays. See the section on
TOPICS for more information on how this ls done.

INPUT: Y and A registers contain address of an 18 byte parameter I ist:
Y/A --> +O 8 character module name (no .OBJ)

+8 Slot (or 0 for last used)
+9 Drive (or 0 for last used)
+10 FI ags

$80 - Load down from HI
$40 - Ignore modules not found
$20 - Even page boundaries

+11 Return code on output
0 - No errors
2 - Module not found
4 - Out of memory for modules
6 - Out of memory for dictionary
8 - Inconsistent module structure
10- Disk 1/0 error

+12,+13 LO address CLO/HI)
+14,+15 HI address CLO/HI)
+16,+17 Address of 2 byte anchor

want to
program.

ADVANCED

The anchor bytes must be preset to zeros. They wll I be set by LINKER to point to a
chain of all modules processed.

OUTPUT: LO and HI addresses are updated to reflect the actual space occupied by the
output load module. The carry flag is set if an error occurs. The 2 byte anchor is
set to point to the first module loaded and each module is chained to the next (see
ADVANCED TOPICS section).

USES: $00 through $09 and $3C through $3F, DOS ZPAGE.

CALLS: OPEN, CLOSE, READ.

18

DOS TEXT FILE ACCESS

It should be noted that the OPEN, CLOSE, POSN, READ, and WRITE subroutines that
constitute LINKER's DOS text file access method cal I DOS 1s file management
subroutines directly (via the 3-page jump vector). This has several ramifications.
Since the usual method of printing DOS commands with a control-0 character rs not
used, there is a significant increase in efficiency. Also, no checking is done within
the file manager for 'empty bytes' (hex zeros) within a file so an end of file
condition wil I only occur If no more disk sectors exist (except for random files).
With this access method you can dynamically position to any byte in the file and read
or write any number of bytes to/from a memory buffer (INPUT/OUTPUT statements are not
the medium for data transfer). This means you can store binary values of any kind
(control characters~ binary zeros, Internal flags and binary values) on the disk. The
interface to the DOS file manager is a reasonably rigidly defined interface which has
remained constant across al I versions of DOS to date. No version dependent patches or
~umps to DOS are made.

19

ADVANCED TOPICS

RELINKING A PREVIOUSLY LINKED MODULE

In general It is better to rebuild a load module "from scratch", that is from its
component object module files. If this is not possible or undesirable, you can run
a previously linked load module (containing several combined CSECTS) through LINKER
by renaming It to the 11 .0BJ" file name format. By doing this yoa can obtain a map
of a prevlo~sly linked module or add to it or change It.

Suppose you have previously linked DEMO and have misplaced the indlvidual object
modules that built it. Now, however, you want to replace the PRINT subroutine in the
DEMO load module with a special one you have written. To do this you would rename
DEMO to DEMO.OBJ so that LINKER can find It on the diskette. You would put your new
PRINT subroutl ne out as PR INT .OBJ and then BRUN LINKER. When LINKER asks for the
first module to load, specify PRINT. When it askes for the next module, specify
DEMO. What happens ls that LINKER wll I use the first copy of PRINT it finds (your
new version) and wil I ignore the old version contained in the DEMO load module. There
are two disadvantages to this procedure. One Is that now PRINT wll I be the first
CSECT in your new load module, meaning the entry point of the load module ls now
somewhere in the middle. This makes It impossible to use the BRUN command to execute
it. A I so, LINKER w I I I not recover the space occup led by the dup I i cate copy of the
PRINT subroutine, so, even though it wll I never be called, It wll I continue to be
part of the output load module. To avoid these problems, you are better off to always
construct your load modules from individual object modules.

Occasionally It is advantageous to have several CSECTS in a single object module
file. One reason for this Is the case of two or more subroutines which all need to
share the same code or data. POSN, READ, and WRITE are an example of this. The
code for each of these Is the same except that a different entry code Is used. A
separate CSECT header Is set up for each of these "named entry points", fol lowed by
a couple of instructions to load a register with the proper entry code value, and a
JMP to the common code (contained in the last CSECT, WRITE). The miniature CSECT
ends with $FF,$FO and Is followed by the header of the next. When LINKER loads
POSN.OBJ it wil I find and remember the entry points READ and WRITE as well.
Remember, however, that a multiple CSECT object module can not be broken apart by
LINKER so even If you are only using READ your module wil I still incly_,de POSN and
WRITE also. Another thing to think about is that since READ and WRITE are not
represented by a diskette file name, if your module does not use POSN, LINKER won't
be able to find READ or WRITE on the diskette. Luckily, OPEN uses POSN and you
can't use READ or WRITE without first cal ling OPEN, so this is not a problem with
this example.

20

SETTING UP OVERLAYS

.Using overlays Is a way to make a very large program fit into a small memory space.
Ordinarily, a program that uses overlays consists of a load module cal led the "root
segment" which is always in memory and two or more "overlay segment" load modules
which are stored on diskette and take turns being loaded into the same area of
memory. An example might be a data entry program. Such a program would probably
begin with a menu of the functions It can do (initialize a file, add entries, update
an entry, print entries). When the user of the program is doing one of these
functions, there is no need to keep the others in memory so they are kept as
overlays. Usually the menu part of the program and the variable data would be the
root segment and each function would be an overlay. The amount of memory needed
would be that occupied by the root segment plus that occupied by the largest of the
overlays. This example is diagrammed below, showing the program's memory during the
time the user Is adding entries to his file:

MENU

COMMON DATA

COMMON SUBROUTINES

"ADD ENTRIES"
PROGRAM

FIGURE 3.

21

OVERLAY
AREA

By calling LKED (the functional part of the LINKER program) as a subroutine of the
root segment, you can, during execution, load program segments into your "overlay
area" as they are needed. In doing so, you can even connect subroutine references
in the overlay module to subroutines in the root segment and vice versa. To explain
how this Is done, consider the fol lowing root segment as produced by LINKER:

ANCHOR XYZ

LKED
ROOT

.

LKED

DEF
VI

0

r
0

FIGURE 4.

In this diagram, the load module ROOT consists of three CSECTS, ROOT, l,.KED 1 and DE::F~
ROOT references LKED and XYZ. XYZ has been left unresolved (by omitting XYZ.OBJ from
the diskette when ROOT was I inked) since it wll I appear in the overlay segment. When
LINKER builds a load module, it also links all the CSECTS it finds together in a
chain which is pointed to by the anchor bytes <provided in the parml i?t to LKED>.
Each time LKED is cal led, it first processes al I CSECTS it finds on this chain before
trying to load the requested module. By manipulating this chain of CSECTS you can
control LKED 1 s actions upon your modules. In the example, the anchor points to ROOT,
ROOT points to LKED, LKED points to DEF, and DEF points to zeros (end of chain).
These I ink bytes are in the modu I e headers at offset +11 and +12 (Remember the tw.o
double bytes in the header? The first one is this pointer and the second is the use
count). Norma I I y when you ca I I LKED you pass it a zeroed anchor. This means there are
no previously loaded modules to be incorporated into the final module. In our case,
however, we want the overlay module to be I inked to the root segment so, when LKED is
cal led to load the first overlay, we must pass it an anchor which points to the JMP
at the beginning of ROOT. LKED is cal led to load OVLY1.0BJ in the m~mory fol lowing
DEF and the following diagram shows the result.

22

ANCHOR XYZ

ROOT LKED

-,._

LKED

~

DEF

OVLYl
DEF

XYZ

Lr

0
FIGURE 5.

Notice that ROOT's reference to XYZ has been resolved and OVLY1 cal Is DEF in :th.e
root segment. Also note that the anchor chain ls longer now. When It is time to
load another overlay, the anchor chain must be shortened back to its original length
(by storing zeros In the link pointer in the DEF module header) and LKED is cal led
to load OVLY2 into the same memory OVLYl had occupied. If OVLY2 doesn't have an XYZ
subroutine as part of it, ROOT should not attempt to cal I that CSECT and LKED mu?t
be cal led with the $40 flag set.

23

APPENDIX A - DEMO PROGRAM LISTING

1 ORG $800
2 *
3 * DEMO: DEMONSTRATION OF USE OF
4 * THE LINKAGE EDITOR AND THE
s * ASSOCIATED SUBROUTINE LIBRARY.
6 *
7 IN EQU $200 INPUT BUFFER
8 GET EQU $FD6A MONITOR GET SUB
9 COOT EQU $FDED MONITOR OUTPUT SUB
10 CEOS EQU $FC42 CLEAR TO END OF SCREEN
11 RETURN EQU $8D
12 PROMPT EQU $33
13 Al EQU $3C
14 A2 EQU $3E
lS AUX EQU $S4
16 AC EQU $SO
17 HOME EQU $FCS8
18 TEXT EQU $FB39
19 VTAB EQU $FBSB
20 *
21 * MODULE HEADER
22 *

0800: 4C 11 08 23 JMP DEMO EPA
0803: C4 cs CD 24 ASC "DEMO II NAME
080B: 00 00 2S HEX 0000 LINK
080D: 00 00 26 HEX 0000 USECOUNT

27 *
080F: FF Fl 28 HEX FFFl INSTRUCTIONS

29 *
0811: 20 39 FB 30 DEMO JSR TEXT CLEAR SCREEN
0814: 20 S8 FC 31 JSR HOME TEXT MODE
0817: 20 Sl 09 32 JSR PRINT
081A: DA 33 HEX DA
081B: C4 cs CD 34 ASC "DEMONSTRATION PROGRAM"
0830: 8D 3S DW RETURN
0831: 8D 36 DW RETURN
0832: 00 37 HEX 00

38 *
0833: A9 03 39 DEMOl LDA #3 ALWAYS AT TOP
0835: 20 SB FB 40 JSR VTAB
0838: 20 42 FC 41 JSR CEOS
083B: 20 Sl 09 42 JSR PRINT
083E: DA 43 HEX DA
083F: cs CE D4 44 ASC "ENTER FIRST NUMBER"
08Sl: 8D 4S DW RETURN
0852: 00 46 HEX 00
0853: A9 BF 47 LDA #"?
08SS: 8S 33 48 STA PROMPT SET PROMPT FOR GET

24

0857: 20 6A FD 49 JSR GET GET LINE OF INPUT
085A: 8A 50 TXA CHECK LENGTH
00s:B: FO D6 51 BEQ ·oEMOl
0850: AD 00 02 52 LDA IN END?
0860: C9 cs 53 CMP :fl:"E
0862: DO 03 54 BNE NEND NO
0864: 4C 72 09 55 JMP EXIT YES, EXIT
0867: A9 00 56 NEND LDA :fl:<IN
0869: 85 3C S7 STA Al
086B: A9 02 S8 LDA :fl:>IN
086D: 85 3D S9 STA Al+l
086F: 20 3B 09 60 JSR ATOB CONVERT NUMBER
0872: 98 61 TYA ANYTHING?
0873: FO BE 62 BEQ DEMOl NO, START OVER
0875: AS 3E 63 LDA A2 GET IT
0877: 85 50 64 STA AC
0879: AS 3F 65 LDA A2+1
087B: 85 51 66 STA AC+l

67 * 087D: A9 03 68 DEM02 LDA :fl:3
087F: 20 SB FB 69 JSR VTAB TAB TO SAME LINE
0882: 20 42 FC 70 JSR CEOS
0885: 20 51 09 71 JSR PRINT
0888: DA 72 HEX DA
0889: cs CE D4 73 ASC "ENTER SECOND NUMBER"
089C: 8D 74 DW RETURN
089D: 00 7S HEX 00
089E: 20 6A FD 76 JSR GET GET SECOND NUMBER
08Al: 8A 77 TXA NULL LINE?
08A2: FO D9 78 BEQ DEM02 THEN ASK AGAIN
08A4: A9 00 79 LDA :fl:<IN
08A6: 8S 3C 80 STA Al PASS RESPONSE
08A8: A9 02 81 LDA :fl:>IN
08AA: 8S 3D 82 STA Al+l
08AC: 20 3B 09 83 JSR ATOB
08AF: 98 84 TYA ANY DIGITS FOUND?
08BO: FO CB 85 BEQ DEM02 NO, ASK AGAIN
08B2: AS 3E 86 LDA A2
08B4: as 54 87 STA AUX SET FOR MULTIPLY
08B6: AS 3F 88 LDA A2+1
08B8: 8S 55 89 STA AUX+l

90 *
08BA: A9 03 91 LDA :fl:3
08BC: 20 SB FB 92 JSR VTAB
08BF: 20 42 FC 93 JSR CEOS pos+++QN FOR ANSWER
08C2: A4 50 94 LDY AC PASS.FIRST NUMBER
08C4: AS 51 95 LDA AC.+l
08C6: 20 F7 08 96 JSR FORMAT TQPRINT·SUBROUTINE
08C9: A9 AA 97 LDA *II*
08CB: 20 ED FD 98 JSR COUT TIMES •••
08CE: A4 54 99 LDY AUX
08DO: AS 55 100 LDA AUX+l
08D2: 20 F7 08 101 JSR FORMAT SECOND NUMBER
08D5: A9 BD 102 LDA :fl:"=
08D7: 20 ED FD 103 JSR COUT EQUALS~ .•

25

104 *
08DA: A9 00 105 LDA #0 SET HI PART
08DC: 85 52 106 STA AC+2 TO ZERO
08DE: 85 53 107 STA AC+3
08EO: 20 SC 09 108 JSR MULT 'AUX*AC

109 *
08E3: A4 50 110 LDY AC
08E5: AS 51 111 LDA AC+l
08E7: 20 F7 08 112 JSR FORMAT PRINT ANSWER
08EA: A9 8D 113 LDA #RETURN NEW LINE
08EC: 20 ED FD 114 JSR COUT

115 *
08EF: A9 lE 116 LDA #30 WAIT 3 SECONDS
08Fl: 20 46 09 117 JSR DELAY
08F4: 4C 33 08 118 JMP DEMOl THEN START ALL OVER

119 *
120 * FORMAT: PRINT A BINARY NUMBER
121 *

08F7: A2 00 122 FORMAT LOX,. #<IN WHERE TO PUT OUTPUT
08F9: 86 3C 123 STX Al
08FB: A2 02 124 LDX #>IN
08FD: 86 3D 125 STX Al+l
08FF: A2 AO 126 LDX *" FILL WITH BLANKS
0901: 20 30 09 127 JSR BTOA Y,A ALREADY LOADED
0904: A2 00 128 LDX #0 START OUTPUT LOOP
0906: BD 00 02 129 FORMLP LDA IN,X GET A CHAR
0909: C9 AO 130 CMP #" BLANK?
090B: FO lB 131 BEQ FORMl YES, SKIP IT
090D: 20 ED FD 132 JSR COUT
0910: 29 OF 133 AND #$OF CONVERT DIGIT
0912: A8 134 TAY
0913: 8A 135 TXA
0914: 48 136 PHA SAVE XREG
0915: B9 7F 09 137 LDA TONTAB,Y GET TONE VALUE
0918: 85 3C 138 STA Al PASS AS FREQ
091A: A9 lE 139 LDA #30
091C: 85 3D 140 STA Al+l DURATION FOR TONE
091E: 20 67 09 141 JSR TONE
0921: A9 01 142 LDA #1 WAIT 1/10 SECOND
0923: 20 46 09 143 JSR DELAY
0926: 68 144 PLA
0927: AA 145 TAX RESTORE XREG
0928: ES 146 FORMl INX
0929: EO 05 147 CPX #5 ENO'?
092B: 90 D9 148 BCC F.ORMLP
092D: 60 149 RTS

150 *
151 * GLOBALS
152 *

092E: FF F3 153 HEX FFF3
154 *

0930: 4C 00 00 155 BTOA JMP $0
0933: C2 D4 CF 156 ASC 11 BTOA II

093B: 4C 00 o<r 157 ATOB JMP $0
093E: Cl D4 CF 158 ASC "ATOB n

26

APPENDIX B - PROBLEMS OR QUESTIONS

We hope you find LINKER a useful and reliable product. It has been carefully designed
and tested but with every product there is always the posslbil ity that there are
minor or esoteric bugs. Naturally, we want to keep LINKER as bug free as possible,
so, should you uncover one, please fil I out the form below and mai I it to us. We wll I
look into the problem you are having and get back to you with a fix if at all
possible. If you just have a question on the use of LINKER or on any of Its
subroutlhes, feel free to send the form in with your questions and we wi 11 try to
answer them for you. Should we make any significant changes to LINKER or Its
subroutine library, we wll I Issue a new version of the program. To insure that you
are kept abreast of such updates, please mall the enclosed postage paid postcard with
you name and address and the word LINKER printed on it.

LINKER PROBLEM REPORT

NAME:

ADDRESS:

MACHINE MEMORY SIZE: K NUMBER OF DISK DRIVES:

OTHER DEVICES:

VERSION OF DOS BEING USED:

PLEASE DESCRIBE YOUR PROBLEM/QUESTION BELOW:

MAIL THIS COMPLETED FORM TO

DON WORTH
THE SOFTWARE FACTORY
PO BOX 904
CHATSWORTH, CA 91311

IF POSSIBLE, INCLUDE A PRINTER LISTING AND/OR A DISKETIE CONTAINING YOUR FAILING
PROGRAM.

28

APPENDIX C - OBJECT r-OOULE STRUCTURE SUMMARY

*
* MODULE HEADER
* JMP NAME JUMP TO ENTRY POINT

ASC "NAME II GLOBAL NAME OF CSECT
HEX 0000 LINK VALUE
HEX 0000 USE COUNT

*
* J NSTRUCTIONS SEGMENT
*
*
NAME

*
*
*
*

*
*
*
*
APTR

ZPTR

*
*
*

*
ASUB

ZSUB

*

HEX FFFl

JSR ASUB

JSR ZSUB

DATA SEGMENT

HEX FFF4

ADDRESS CONSTANTS

HEX FFF2

DA A

DA z
GLOBALS SEGMENT

HEX

JMP
ASC

JMP'
ASC

FFF3

$0
"ASUB

$0
11zsus

* END OF CSECT
*

HEX FFFO

INSTRUCT I ON S

DATA

SEGMENT

FIRST ADCON

LAST ADCON

FIRST GLOBAL REFERENCE
" .

LAST GLOBAL REFERENCE
II

29

