The

Software Factory

AV 433 5

A LINKAGE EDITOR/LOADER FOR THE APPLE Il

* DON WORTH

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

THE SOFTWARE FACTORY MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE SOFTWARE
FACTORY SOFTWARE IS SOLD OR LICENSED "AS [S". THE ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT THE SOFTWARE FACTORY, ITS DISTRIBUTOR, OR ITS RETAILER)
ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN
IF THE SOFTWARE FACTORY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY
NOT APPLY TO YOU.

This manual and the associated software is copyrighted. All rights are reserved.
This document may not, in whole or in part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form without the
prior consent, in writing, from The Software Factory.

Copyright (C) 1980 by The Software Factory. All rights reserved.

TABLE OF CONTENTS

ASSUMPTIONS AND RECOMMENDATIONS.ccescecceccscsacacsscces
LINKAGE EDITORScscccescosoccccssscscsscsssasossacsssnonse
AN EXAMPLE«ccececesesocsooescccecososscscasscacscscncosane
WRITING ASSEMBLER PROGRAMS WITH LINKER:ececosocosecosase
USING LINKER¢ecececoscoaoscsssscosasssosccsoscscacacacasns
LINKER ERROR MESSAGEScceeeceeseecsosscescncscasscaasaanaae |1
LINKER SUBROUTINE LIBRARY.eeeeecescocccasascasscssasnsas 12
ADVANCED TOPICSececcovecsscososcososcscacsaossscsacsscsacs 20

ouUlWN —

APPENDIX A = DEMO PROGRAM LISTINGeeccececoccssccsscasaas 24
APPENDIX B = PROBLEMS OR QUESTIONS.ceceocecscccsssocsssss 28
APPENDIX C - OBJECT MODULE STRUCTURE SUMMARY.ccecesessss 29

ASSUMPT IONS AND RECOMMENDAT IONS

LINKER requires the following as a minimum:

32K APPLE Il or APPLE Il PLUS
DISK Il
some form of assembler

LINKER is compatable with all versions of DOS up fo and including 3.2.1. It should be
noted that the above requirements are minimal; a good assembler is very important ‘o
productivity, although the integer basic ROM mini-assembler can be used. Throughout
this document, exampies of assembler l|anguage programs are in the TED |l + assembler
(from the WOZPAK) format. Defined below are the pseudo-ops used by TED || +:

ORG Sets address where program will run

EQU Equates a label to a numeric value

DS Reserves space without assigning it a value
DA Stuffs address of a label into memory (LO/HI)
DW Stuffs a byte value Into memory

HEX Stuffs several bytes of hex into memory

ASC Stuffs several bytes of ASCI| into memory

You would be well advised to choose an assembler which will support at least the
functions |isted above (perhaps with different names).

Another consideration is storage of the assembler output. To use LINKER vyou must
store the memory image created by your assembler as a binary file with a name ending
in ".0BJ". Although you can do this by using the DOS BSAVE command, you must then
know the length and memory location of +the object code. Some assemblers will
automatically do this for you and are therefor easier to use with LINKER.

At the Software Factory we use the Programma |nternational full screen editor (PIE),
and a modified form of the TED assembler for program development.

L INKAGE EDITORS

In computing, the process of ftaking a program from initial keying=in fo final.
execution is called the development cycle. This cycle is diagrammed in figure 1.

I

KEYBOARD

EDITOR

ASSEMBLER

LINKER

PN

EXECUTABLE
PROGRAM

N

FIGURE 1.

The cycle begins with the programmer keying in his source statements. These are
accepted by a program called an EDITOR. The edifor usually stores the completed
source program as a file on the floppy disk. At the next step, an ASSEMBLER is
invoked to translate the source statements into binary machine code. This machine
or "object" code Is stored on disk as an "object module".

Before LINKER became available, most APPLE program development ended here. An
object module was loaded and run at the location for which it was assembled, using
the DOS BRUN command. It had to be completely self-sufficient (not requiring any
outside subroutines except for those in absolute locations, such as ROM) or it had
to be manually combined with other routines at fixed addresses.

With LINKER, however, another step is added, following assembly. The |inkage edit
step combines and relocates one or more object modules together to form a final,
executable module or "locad module". LINKER allows the programmer to specify, at
linkage edit time, where in memory his module will execute, and relocates the input
object modules as necessary, updating their call statements as the locations of
their subroutines shift. Once LINKER has finished loading and "connecting" all the
object modules, the memory image can be BSAVEd as an executable module or CALLed
immediately. |f an error occurs in execution, the cycle repeats, starting with the
use of the editor to correct the error.

AN EXAMPLE

Suppose you are writing a program called "DEMO" which will act as a musical
calculator. [+ will ask the user for fwo numbers, multiply them together, and print
the answer, producing a tone for each digit printed. Using LINKER and ifts
associated |Ilibrary of subroutines to do this demonstrates +their value as a

development aid. To see how the demo program works, BRUN DEMO on the LINKER
distribution diskette. A source l|isting of the DEMO program is given in APPENDIX A.
DEMO calls seven |ibrary subroutines:

BTOA Converts an Internal binary number into printable ASClI| numeric digits.
ATOB Converts ASCl| numeric digits, as fyped by the user, to a binary number.
DELAY Waits a period of ftime or until a keypush before returning to caller.

PRINT Prints one or more |ines of ASCI| tfext.

MULT Multiplies two numbers together.

TONE Produces a tone of a given frequency and duration on the APPLE's speaker.
EXIT Exits to BASIC.

In addition, six subroutines in the monitor ROM are called:

GET $FD6A Gets an input line from the keyboard
cout $FDED Prints a single character

CEQS $FC42 Clears to end of screen

HOME $FC58 Erases screen

TEXT $FB39 Sets TEXT mode

VTAB $FB5B Does a vertical tab

Since the above six subroutines are at fixed or "absolute" l|ocations, their
addresses are assembled into DEMO directly. The other seven will be added to DEMO
by LINKER later.

When the program in APPENDIX A is assembled and stored on diskette (using BSAVE) as
an object module file (DEMO.0OBJ) LINKER may be run. The results of such a run are
shown in Figure 2. A BSAVE command Is issued to save the final DEMO module and a BRUN
executes [+, Notice that all of the |ibrary subroutines required by DEMO have been
added to make the final load module.

>BRUN LINKER
LINKER-=YV2.0
COPYRIGHT 1980 THE SOFTWARE FACTORY

(LINRER AT AS$1000)

LOW ADDRESS (IN HEX) 2800
HIGH ADDRESS (IN HEX) 21000
LOAD DOWN FROM HI ?N
MODULES ON PAGE BOUNDARIES 2N
LOAD WHAT MODULE ?DEMO
LOAD WHAT MODULE ?
MODULE AS USE

DEMO 0800 0

BTOA 098B 1

ATOB 09FC 1

DELAY 0A4C 1

PRINT 0A6F 1

MULT 0AA6 1

TONE 0AD7 1

EXIT 0BO1 1

TOTAL AS$0800,LS0331

>

FIGURE 2.

WRITING ASSEMBLER PROGRAMS FOR USE WITH LINKER

Assembler language modules processed by LINKER must conform to certain conventions.
This practice allows the use of any assembler with LINKER rather than requiring a
special assembler which can put out relocation and global symbol dictionaries.
Although these conventions are fairly easy to follow, it is vital that they be
carefully adhered to in order to avoid problems at |ink or execution time.

A typical object module consists of a single named subroutine or main program,
called a "Control Section" (CSECT).. A CSECT must begin with a 15 byte header and
end with a two byte end-of-section marker. This is so that LINKER will know the
name and size of each CSECT it processes. A typical header definition (from the
DEMO program) is shown below: '

+0 JMP - DEMO JMP TO ENTRY POINT

+3 ASC "DEMO " 8 CHARACTER CSECT NAME : s
+11 HEX 0000 RESERVED FOR LINKER'S...

+13 HEX 0000 ...USE. MUST BE 0.

A CSECT always ends with:
HEX FFFQ $FFFO END OF CSECT MARKER

Within a CSECT, all instructions, data, address constants, and global subroutine
references must be collected into separate segments. This is so that LINKER will

know what it 1Is dealing with at all times during the relocation of the object
module.

All instructions within the CSECT must be contained within one or more instruction
segments. Each instruction segment must begin with the following two byte header:

HEX FFF1 $FFF1 INSTRUCTION SEGMENT

This tells LINKER that what follows is a segment of pure instructions. No embedded
data is allowed (except as noted below) since LINKER must relocate all absolute JMPs
or JSRs (etc.) to labels within +the CSECT for the final location of the object
module. |f data must appear within an instruction segment (as with an inline argumen+
list for PRINT) it must be preceeded by a $DA and end with a $00 byte.

Example:

JSR PRINT CALL PRINT SUBROUTINE

HEX DA STARTING EMBEDDED DATA

ASC "D EMOQ" DATA TO PASS TO PRINT

HEX aD CARRIAGE RETURN

HEX 00 END OF EMBEDDED DATA

LDA #1? CONTINUE WITH NEXT INSTRUCTION

Collect all raw data into data segments. This prevents LINKER from +rying to
relocate anything imbedded in it that might accidentally look like an address or
instruction. Each data segment must begin with the following fwo byte header:

HEX FFF4 $FFF4 DATA SEGMENT

You must insure that the data does not contain anything which might be interpreted
as a valid segment header ($FFFO-$FFF4).

Address constant segments contain one or more ftwo byte address constants which will
require relocation. Address constants which are fixed values (such as ROM addresses
or $0000) need not be included, since they will not require relocation. Addresses
which are labels In the CSECT being assembled should be included, however. The
following header marks the beginning of an address constant segment:

HEX FFF2 $FFF2 ADCON SEGMENT

Global symbol reference segments contain JMP instructions fo be "tied" to external

CSECTS. Thus, if you are calling PRINT from DEMO, you are referencing the globally
known symbol "PRINT™ from the DEMO CSECT. Global reference segments begin with:

HEX FFF3 $FFF3 GLOBALS SEGMENT
Each global reference has the form:

PRINT JMP $0000 LINKER WILL FILL IN ADDRESS
ASC "PRINT " 8 BYTE GLOBAL NAME

You should take heed of the following warnings:

1) Do not make references to labels in your program with immediate operands, such
as:
ME LDA #<ME PUT ADDRESS OF ME...
STA POINT INTO POINT
LDA #>ME B
STA POINT+1
LINKER will not detect these and they will not be relocated. Use address constants
instead, viz:
ME LDA MEPTR PUT ADDRESS OF ME...
STA POINT INTO POINT
LDA MEPTR+1
STA POINT+1
. (REST OF PROGRAM)
HEX FFF2 ADCON SEGMENT
MEPTR DA ME ADDRESS OF 'ME'
2) Avoid moving the program counter forward in an assembly, skipping an area in the
ob ject module:
BUFF DS 256
or
BUFF=*
*=BUFF+256
You may be skipping over "garbage" which looks |ike segment headers. |f you must

use this practice, first zero the memory which will
ob ject code.

3) Avoid data sequences which look |ike segment
sequences |ike this appearing after execution has
affect LINKER.

be used to hold the assembled

headers ($FFF0-$FFF4).
started, of course, will

Data
not

USING LINKER

To invoke LINKER, boot DOS and type:
BRUN LINKER

The following screen will appear:

LINKER=V2.0

COPYRIGHT 1980 THE SOFTWARE FACTORY

(LINKER AT A$1000)

LOW ADDRESS (IN HEX) ?

Check the LINKER's location (in this case $1000). |If your program is to reside in
the same general area, you must first relink LINKER itself to another "safe" place
in memory. LINKER will not work very well if you have it load your program on top
of itself! To avoid this, pick an area of memory you are not using about $1000
long, and follow the instructions below using LINKER as the name of the module +to
load. Then run the new LINKER fto link your module.

Now enter the hex address of the first byte in memory for the output Ilocad module
(800, for example).

You will now be asked:

HIGH ADDRESS (IN HEX) ?

Give the address of the highest byte in memory (+1) which may be used to build the
module. Note that the area between the low and high addresses must be large enough

to contain the completed load module as well as the LINKER's global symbol
dictionary. For safety's sake, assign an area as large as you can (only what |Is
needed will be used) but at least as large as the final load module plus 10 per cent

for the dictionary. Let's assume you entered 1000 for this example.

The next question is:

LOAD DOWN FROM HI ?

If you want the normal way of loading a module (that is from the low address upward
tThrough memory) just hit the return key (or enter "N")., |If, on the other hand, vyou
want to pack your module up against some high limit (like HIMEM, for example) and
you don't care where it sftarts in memory (just where it ends), respond "Y" +to the
question. ~ For our example, we will assume you respond with a "N",

LINKER now asks:

MODULES ON PAGE BOUNDARIES ?

If you want all the object modules in your final load module packed together with no
space between them, hit return or "N", If it is important fo your program that each
CSECT starts on an even 256 byte "page" boundary (for timing or whatever), reply
with a wy", Note that forcing page boundaries will use more memory for the load
module. In our example, we will reply "N",

"At This point, LINKER asks for the module you want fo link:

LOAD WHAT MODULE ?

Insert the diskette containing the first object module file (usually your 'main'
program) in the drive you used to BRUN LINKER. Enter the name of the CSECT (do not
include ".0BJ") and hit return. LINKER will proceed to load your object module,
relocating it to its new location, then it will search the diskette for each of the
subroutines called by your main program and each of their subroutines, loading and
relocating them too. |If LINKER can not find an object module file on the disketfte,
it makes an internal notation of this, but continues until all modules that can be
loaded are l|oaded. LINKER then asks for the name of the next module you wish +o
load. Ordinarily, if all the modules needed were present on the diskette you used,

you will just hit return, telling LINKER that the module is complete. |If you wish
to have LINKER search another diskette for modules it needs, switch diskettes, type
the name of any CSECT in your program (your main program again, for example) and hit
return. When LINKER has searched all your diskettes, enter a null name, as
described above, to exit LINKER. In our example, we entered DEMO as the name of the
module to load.

As it exits back to BASIC, LINKER produces a memory map of your load module which
might lock |ike this:

MODULE AS$ USE
DEMO - Q800 0
BTOA 0988 1
ATOB 09FC 1
DELAY 0A4C 1
PRINT 0A6F 1
MULT 0AA6 1
TONE 0AD7 1
EXIT 0BO1 1

1

TOTAL A$0800,L$033

The first object module LINKER loaded, in this example, was DEMO. |t was loaded at
the low memory address you specified ($0800). The O under USE means that this
module was 'used'! by no other object module as a subroutine, since it is the 'main!
program, DEMO makes references to seven other CSECTS; BTOA, ATOB, DELAY, PRINT,
MULT, TONE and EXIT. These were loaded one by one right after DEMO in memory and
their starting addresses are listed. In each case they were used only by DEMO so
their use count is 1. |f LINKER was unable fo find a CSECT ifs name will appear in
the list with '22??'!' for a starting address. (If you try to run the completed I|ocad
module and it calls the missing CSECT execution will go to location $0000.) Finally,
LINKER gives the lowestT address and the total length of the module. To save the
finished executable program you could type:

BSAVE DEMO,A$800,L$331
and to run it you would type:

BRUN DEMO

LINKER ERROR MESSAGES
LINKER can produce the following error messages while loading your module.

INSUFFICIENT MEMORY = The space you alloted in memory for the load module (low
addréss to high address) was not big enough for both the module and the global
symbol dictionary. Either lower the low address or raise the high address.

BAD OBJECT MODULE STRUCTURE = One of the object modules LINKER was processing
did not conform to the conventions explained in the section WRITING ASSEMBLER
PROGRAMS FOR USE WITH LINKER. It Is not possible for LINKER to tell you which
one It is, but you can try using LINKER to load each CSECT one by one by name
to zero in on the culprit. '

DISK 1/0 ERROR =~ This is a general catch-all error message for any problem
having to do with the disk. |t could mean you were out of DOS buffers, the
object module file ended prematurely, or that a real 1/0 error occured.

If you accidentally hit reset while running LINKER you may be able fo recover
what you were doing by calling it at Its starting point (normally $1000 unless
you've relinked It).

There are at least two ways you can drive LINKER "crazy", |f LINKER seems to
go info a loop reading the diskette and then finally comes back with an
insufficient memory message, its possible that it was frying to load an object
module whose DOS file name did not match any of the CSECT names within it.
Always make sure that the name of an object module file Is the same as one of
the programs it contains. |[|f LINKER just freezes up or produces random kinds
of garbage or error messages it is likely that you have tried tfo |ink your
module over the +top of LINKER itself. Check its location and move it to
another part of memory (by relinking i+) If necessary.

11

LINKER SUBROUTINE L IBRARY

This section describes +the subroutines provided for your use on the LINKER
distribution diskette. For an example of their use, see APPENDIX A.

PRINT = L$37

This routine allows you fto easily print text on the screen (or whatever the output
device is) just like you would in BASIC.

INPUT: Simply follow the JSR to PRINT with the text to be printed, preceeded with a
$DA and ended with a $00. For example:

JSR PRINT CALL PRINT SUBROUTINE
HEX DA EMBEDDED DATA STARTS
ASC "LINE 1"
HEX 8D CARRIAGE RETURN
ASC "LINE 2"
HEX 8Doo CARRIAGE RETURN/END OF DATA
Notice +that unless you include carriage returns ($8D) PRINT will not put any In.

The $DA and the $00 are not printed. Execution continues with the instruction
Immediately following the $00.

USES: $3C,$3D

CALLS: $FDED

ATOB - L$50

Converts an ASCI| number, as typed in from the keyboard for instance, into its
binary equivalent so it can be operated upon arithmetically.

INPUT: $3C/$3D contains the address (LO/HI format) of the first numeric digit of
the ASClII string. ATOB will convert up to 5 digits or until a non numeric is
encountered.

OUTPUT: $3E/$3F will contain the positive binary result (LO/HI). The Y register
will contain the number of valid digits converted.

USES: $3C through $41

BTOA - L$71

BTOA converts binary numbers to ASCII digits for printing. This routine is the
reverse of ATOB. :

INPUT: The X register should contain the left fill character ($A0 for blank fill),
the Y and A registers contain the number to be converted (LO/HI), and $3C/$3D
contains the address of the 5 byte output area.

OUTPUT: The output area will contain the number, right adjusted and left filled
with the fill character.

USES: $3C through $41

FORMAT - L$3B

This routine performs the same function as BTOA (in fact it calls BTOA) except it
prints the number after converting it.

INPUT: The Y and A register should contain the number fo be converted (LO/HI).

OUTPUT: Prints 5 characters, left filled with blanks, numeric digits right
adjusted.

USES: $3C through $41 and $200-$204

CALLS: BTOA, $FDED

EXIT = L$30

When you want your program fto end its execution in a "nice" way, JMP to EXIT. EXIT
will give control to the active BASIC (under DOS if it is active). There are no
input arguments and no zero page bytes are used.

DELAY - L$23

You can call this routine to cause your APPLE to "spin its wheels" for a period of
time while a display is on the screen or to slow down some program's operation. You
can set the delay period for anything from 1/10 of a second to 25 seconds in 1/10 of
a second intervals. |f, prior to the end of the delay period, the APPLE user hits a
key, DELAY will return with the ftime remaining in the A register.

INPUT : A register contains the number of tenths of seconds to delay before
returning (0-255, 0=256). For more than 25.6 seconds, call DELAY in a loop.

OUTPUT: A register contains the number of tenths of seconds of the period which
have not expired. The zero flag is set so you can disable the keystroke feature by
BNEing back to the JSR to DELAY.

CALLS: $FCAS8

TONE - L$2A

Calling tThis subroutine with a frequency and duration (0-255) vyou can generate
simple tones on the APPLE speaker.

INPUT: $3C contains the frequency (0-255) and $3D contains the duration (0-255).

USES: $3C, $3D

RND - L$68

This is a fairly uniform random number generator for generating random integers. It
works very much |ike the RND function in Infteger BASIC.

INPUT: Y and A registers contain the highest value the random number can be plus
one (LO/HI).

OUTPUT: Y and A registers contain the random number (0 to HIGHVALUE-1).

USES: $50 through $55 and $4E/$4F

CALLS: MULT
14

OPEN - L$13C

Similar in function to the OPEN command in DOS. You should call +this subroutine
whenever you want to start reading or writing a fext file on the disk. OPEN
searches the disk for the proper file, creating it if necessary, and positions to
the beginning of the file.

INPUT: Y and A registers contain the address (LO/HI) of a seven byte parameter
list:

Y/A ==> +0,+ Address of a 30 byte file name (LO/HI)
+2,+3 Record length or 0,0
+4 ‘Yolume number or 0
+5 Drive to use (0 for last used)
+6 Slot to use (0 for last used)

The X register should contain either $00 to indicate that the file may be created if
It doesn't already exist, or $80 to indicate that it must exist already.

OUTPUT: Unless no DOS buffers were free, the Y and A registers will contain the
address (LO/HI) of an allocated DOS buffer for the file. You must save this since
it is a required input to POSN, READ, and WRITE, and you must CLOSE it when you are
done to free the buffer.

The carry flag is set if an error occured and the X register contains one of the
following error codes:

0 NO ERRORS
4 WRITE PROTECTED
5 END OF DATA
6 FILE NOT FOUND
7 VOLUME MISMATCH
8 1/0 ERROR
9 DISK FULL
10 FILE LOCKED
12 NO BUFFERS AVAILABLE
13 NOT A TEXT FILE
if return code 12 occurs, Y/A will contain zeros but CLOSE may be called.

USES: $3C through $45 and DOS ZPAGE.

CALLS: FBUFF, POSN, FIO

F10 = Incorporated into OPEN.OBJ

This routine is the linkage subroutine to DOS and is called by OPEN, CLOSE, READ,
WRITE, and POSN. It should not be called directly.

15

CLOSE - L$40

For every OPEN call there must be an eventual CLOSE call to do any final updates on
the diskette and free the file buffer.

INPUT: Y and A registers contain the address of the open file buffer (LO/HI) as
returned by OPEN.

USES: $3C through $44 and DOS ZPAGE.

CALLS: FIO

POSN/READ/WRITE = L$AC

These three subroutines are all part of the object module, POSN.OBJ. POSN may be
called to position the file pointer (the location of the next byte to be read or
written). READ is called to read one or more bytes into an area in memory. WRITE Is
called to write a number of bytes from an area of memory.

INPUT : The calling sequence for all three subroutines is similar. Y and A
registers contain the address (LO/HI) of a six byte parameter [ist:
Y/A ==> +0,+1 Address of open DOS buffer
+2,+3 Relative record number for POSN or...
Length to READ or WRITE (LO/HI)
+4,+5 Byte offset for POSN or...

The data address (LO/HI) for READ/WRITE

OUTPUT: The carry flag is set if an error occured and the X register contains a
retfurn code as defined under the OPEN subroutine.

USES: $3C through $45 and DOS ZPAGE.

CALLS: FIO

FBUFF - L3$3B

This routine is called by OPEN to locate a free DOS buffer. |f you wish tfo provide
your own buffers To OPEN you may replace FBUFF.O0BJ with your own version. DOS
buffers have the following format:

+0 30 byte file name area

+30 address of 45 byte workarea

+32 address of 256 byte T/S |ist area
+34 address of 256 byte data area

+36 address of next buffer on chain

If you are content to use DOS's buffers you may ignore FBUFF.

INPUT: none

OUTPUT: The carry flag is set if no free buffer can be found. Otherwise, $3C/$3D"
contain the address of the free buffer.

USES: $3C,$3D

MULT - L$31

This routine Iis similar to the one provided in the NON-AUTOSTART ROM. It is
provided so that your programs can work with the AUTOSTART ROM when a multiply
routine is needed. Only positive numbers are used.

INPUT: $50/$51/$52/$53 contains a 4 byte binary number (LO fo HI) and $54/$55
contains the other number. In general $52/%53 should contain zeros.

OUTPUT: $50/$51/$52/$53 contains the 4 byte result of the multiplication.

USES: $50 through $55.

DIVD = L$33

Divides one number into another. Only positive numbers are used.

INPUT: $50/%$51/%$52/%$53 contains the dividend and $54/%$55 contains the divisor.

OQUTPUT: $50/%$51/%$52/%$53 contains the quotient.

USES: $50 through $55.
17

LKED - L$5D1

You may call +the functional part of LINKER as a subroutine if you want to
dynamically load, relocate, and |ink programs during the execution of your program.
This 1Is especially useful if you want to do overlays. See the section on ADVANCED
TOPICS for more information on how this Is done.

INPUT: Y and A registers contaln address of an 18 byte parameter |ist:

Y/A ==> +0 8 character module name (no .0BJ)
+8 Slot (or 0 for last used)
+9 Drive (or 0 for last used)
+10 Flags

$80 - Load down from HI
$40 - Ignore modules not found
$20 - Even page boundaries
+11 Return code on output
- No errors
Module not found
Out of memory for modules
- OQut of memory for dictionary
- Inconsistent module structure
0- Disk 1/0 error
+12,+13 LO address (LO/HI)
+14,+15 HI address (LO/HI)
+16,+17 Address of 2 byte anchor :
The anchor bytes must be preset to zeros. They will be set by LINKER to point to a
chain of all modules processed.

= OO~ NO
]

QUTPUT: LO and H| addresses are updated to reflect the actual space occupied by the
output load module. The carry flag is set if an error occurs. The 2 byte anchor is
set to point to the first module lcaded and each module is chained to the next (see
ADVANCED TOPICS section).

USES: $00 through $09 and $3C through $3F, DOS ZPAGE.

CALLS: OPEN, CLOSE, READ.

18

D0S TEXT FILE ACCESS

I+ should be noted that +t+he OPEN, CLOSE, POSN, READ, and WRITE subroutines that
constitute LINKER's DOS +text file access method call DOS's file management
subroutines directly (via +the 3-page jump vector). This has several ramifications.
Since the usual method of printing DOS commands with a control-D character 1is not
used, there is a significant increase in efficiency. Also, no checking is done within
the file manager for 'empty bytes' (hex zeros) within a file so an end of file
condition will only occur If no more disk sectors exist (except for random files).
With this access method you can dynamically position to any byte in the file and read
or write any number of bytes to/from a memory buffer (INPUT/QUTPUT statements are not
the medium for data +transfer). This means you can store binary values of any kind
(control characters, binary zeros, Internal flags and binary values) on the disk. The
interface to the DOS file manager is a reasonably rigidly defined interface which has
remained constant across all versions of DOS fto date. No version dependent patches or
Jumps to DOS are made.

19

ADVANCED TOPICS

RELINKING A PREVIOUSLY LINKED MODULE

In general it is better to rebuild a load module "from scratch", that is from its
component object module files. If this is not possible or undesirable, you can run
a previously linked load module (containing several combined CSECTS) through LINKER
by renaming It fo the ".0BJ" file name format. By doing this you can obtain a map
of a previously linked module or add to it or change it.

Suppose you have previously linked DEMO and have misplaced the individual object
modules that built it. Now, however, you want to replace the PRINT subroutine in the
DEMO locad module with a special one you have written. To do this you would rename
DEMO to DEMO.0BJ so that LINKER can find it on the diskette. You would put your new
PRINT subroutine out as PRINT.0BJ and then BRUN LINKER. When LINKER asks for the
first module to load, specify PRINT. When it askes for the next module, specify
DEMO. What happens 1Is that LINKER will use the first copy of PRINT it finds (your
new version) and will ignore the old version contained in the DEMO load module. There
are two disadvantages to this procedure. One is that now PRINT will be the first
CSECT in your new load module, meaning the entry point of the load module is now
somewhere in the middle. This makes it impossible to use the BRUN command to execute
it Also, LINKER will not recover the space occupied by the duplicate copy of the
PRINT subroutine, so, even though it will never be called, it will continue to be
part of the output load module. To avoid these problems, you are better off to always
construct your load modules from individual object modules.

Occasionally It 1is advantageous to have several CSECTS in a single object module
file. One reason for this is the case of two or more subroutines which all need to
share the same code or data. POSN, READ, and WRITE are an example of this. The
code for each of these is the same except that a different entry code is used. A
seperate CSECT header is set up for each of these "named entry points", followed by
a couple of instructions to load a register with the proper entry code value, and a
JMP to the common code (contained in the last CSECT, WRITE). The miniature CSECT
ends with S$FF,$F0 and is followed by the header of the next. When LINKER loads

POSN.OBJ it will find and remember the entry points READ and WRITE as well.
Remember, however, that a multiple CSECT object moduie can not be broken apart by
LINKER so even if you are only using READ your module will still include POSN and

WRITE also. Another thing to think about is that since READ and WRITE are not
represented by a diskette file name, if your module does not use POSN, LINKER won't
be able to find READ or WRITE on the diskette. Luckily, OPEN uses POSN and you
can't use READ or WRITE without first calling OPEN, so this is not a problem with
this example.

20

SETTING UP OVERLAYS

-Using overlays Is a way to make a very large program fit into a small memory space.
Ordinarily, a program that uses overlays consists of a load module called the "root
segment" which is always in memory and two or more "overlay segment" load modules
which are stored on diskette and take turns being loaded intfo the same area of
memory. An example might be a data entry program. Such a program would probably
begin with a menu of the functions it can do (initialize a file, add entries, update
an entry, print entries). When the user of the program is doing one of these
functions, there is no need to keep the others in memory so they are kept as
overlays. Usually the menu part of the program and the variable data would be the
root segment and each function would be an overlay. The amount of memory needed
would be that occupied by the root segment plus that occupied by the largest of the
overlays. This example is diagrammed below, showing the program's memory during the
time the user Is adding entries fo his file:

MENU

COMMON DATA

COMMON SUBROUTINES

" y
ADgRgggiiES' (OVERLAY
AREA
J
FIGURE 3.

21

By calling LKED (the functional part of the LINKER program) as a subroutine of the
root segment, you can, during execution, load program segments into your "“overlay
area" as they are needed. In doing so, you can even connect subroutine references
in the overlay module to subroutines in the root segment and vice versa. To explain
how this Is done, consider the following root segment as produced by LINKER:

ANCHOR —— XYZ
LKED
ROOT
LKED
DEF .
4
0
Y
0
FIGURE 4.

In this diagram, the load module ROOT consists of three CSECTS, ROOT, LKED, and DEF.
ROOT references LKED and XYZ. XYZ has been left unresolved (by omitting XYZ.0BJ from
the diskette when ROOT was linked) since it will appear in the overlay segment. When
LINKER builds a load module, it also links all the CSECTS it finds together in a
chain which is pointed to by the anchor bytes (provided in the parmlist to LKED).
Each time LKED is called, it first processes all CSECTS it finds on this chain before
trying to load the requested module. By manipulating this chain of CSECTS you can
control LKED's actions upon your modules. In the example, the anchor points to ROOT,
ROOT points to LKED, LKED points +to DEF, and DEF points to zeros (end of chain).
These |link bytes are in the module headers at offset +11 and +12 (Remember the two
double bytes in +the header? The first one is this pointer and the second is the use
count). Normally when you call LKED you pass it a zeroed anchor. This means there are
no previously loaded modules to be incorporated intfo the final module. In our case,
however, we want the overlay module to be linked to the root segment so, when LKED is
called to load the first overlay, we must pass it an anchor which points fto the JMP
at The beginning -of ROOT. LKED is called to load OVLY1.0BJ in the memory following
DEF and the following diagram shows the resulft.

22

ANCHOR | XYZ
ROOT LRED
LKED
DEF
OVLY1
DEF
XYZ
\4
0
FIGURE 5.

Notice that ROOT's reference to XYZ has been resolved and OVLY1 calls DEF in +he
root segment. Also note that the anchor chain is longer now. When It is Time o
load another overlay, the anchor chain must be shortened back to ifs original length
(by storing zeros in the link pointer in the DEF module header) and LKED is called
to load QVLY2 into the same memory QVLY1 had occupied. |f OVLYZ doesn't have an XYZ
subroutine as part of it, ROOT should not attempt to call that CSECT and LKED musT
be called with the $40 flag set.

APPENDIX A = DEMO PROGRAM LISTING

1 ORG $800

2 *

3 * DEMO: DEMONSTRATION OF USE OF

4 * THE LINKAGE EDITOR AND THE

5 * ASSOCIATED SUBROUTINE LIBRARY.

6 * .

7 IN EQU $200 INPUT BUFFER

8 GET EQU S$FD6A MONITOR GET SUB

9 couT EQU S$FDED MONITOR OUTPUT SUB

10 CEOS EQU S$FC42 CLEAR TO END OF SCREEN

11 RETURN EQU $8D
12 PROMPT EQU 833

13 Al EQU .$3C
14 A2 EQU S$3E
15 AUX EQU $54
16 AC EQU 50
17 HOME EQU S$FC58
18 TEXT EQU $FB39
19 VTAB EQU SFB5B
20 *
21 * MODULE HEADER
22 *
0800: 4C 11 08 23 JMP DEMO EPA
0803: C4 C5 CD 24 ASC "DEMO " NAME
080B: 00 00 25 HEX 0000 LINK
080D: 00 00 26 HEX 0000 USECOUNT
27 N
080F: FF F1 28 HEX FFFl _ INSTRUCTIONS
29 *
0811: 20 39 FB 30 DEMO JSR TEXT CLEAR SCREEN
0814: 20 58 FC 31 JSR HOME ‘ TEXT MODE
0817: 20 51 09 32 JSR PRINT
081A: DA 33 HEX DA
081B: C4 C5 CD 34 ASC "DEMONSTRATION PROGRAM"
0830: 8D 35 DW RETURN
0831: 8D 36 DW RETURN
0832: 00 37 HEX 00
38 *
0833: A9 03 39 DEMO1 LDA #3 ALWAYS AT TOP
0835: 20 5B FB 40 JSR VTAB
0838: 20 42 FC 41 JSR CEOS
083B: 20 51 09 42 JSR PRINT
083E: DA 43 HEX DA
083F: C5 CE D4 44 ASC "ENTER FIRST NUMBER"
0851: 8D 45 DW RETURN
0852: 00 46 HEX 00
0853: A9 BF 47 LDA #"?
0855: 85 33 48 STA PROMPT SET PROMPT FOR GET

24

0857:
085A:
085B:
085D:
0860:
0862:
0864:
0867:
0869:
086B:
086D:
086F:
0872:
0873:
0875:
0877:
0879:
087B:

087D:
087F:
0882:
0885:
0888:
0889:
089C:
089D:
089E:
08Aal:
08A2:
08a4:
08A6:
08AS8:
08AA:
08AC:
08AF:
08BO:
08B2:
08B4:
08B6:
08B8:

08BA:
08BC:
08BF:
08C2:
08C4:
08Cé6:
08C9:
08CB:
08CE:
08DO0:
08D2:
08D5:
08D7:

FD

02

09

09

FB
FC

D4

FD

09

FB
FC

08

FD

08

FD

NEND -

DEMO2

JSR
TXA
BEQ
LDA
CMP
BNE
JMP
LDA
STA

‘LDA

STA
JSR
TYA
BEQ
LDA
STA
LDA
STA

LbA
JSR
JSR
JSR
HEX
ASC
DW

HEX
JSR
TXA
BEQ
LDA
STA
LDA
STA
JSR
TYA
BEQ
LDA
STA
LDA
STA

LDA
JSR
JSR
LDY
LDA
JSR
LDA
JSR
LDY
LDA
JSR
LDA
JSR

GET GET LINE OF INPUT
CHECK LENGTH

"DEMO1

IN _ END?

#"E

NEND NO

EXIT YES, EXIT
#<IN

Al

#>IN

Al+l

ATOB CONVERT NUMBER
ANYTHING?

DEMO1 NO, START OVER
A2 GET IT

AC

A2+1

AC+1

#3

VTAB TAB TO SAME LINE
CEOS

PRINT

DA

"ENTER SECOND NUMBER"

RETURN

00 :

GET GET SECOND NUMBER
NULL LINE?

DEMO2 THEN ASK AGAIN
$<IN

a1l - PASS RESPONSE
#>IN

Al+l

ATOB -

ANY DIGITS FOUND? .
DEMO2 NO, ASK AGAIN

A2

AUX SET FOR MULTIPLY
A2+1

AUX+1-

#3

VTAB .

CEOS POSITION FOR ANSWER
AC PASS FIRST NUMBER
AC+1 o

FORMAT TO-PRINT SUBROUTINE
#“*

CoUT TIMES...

AUX

AUX+1 “ |

FORMAT SECOND NUMBER

#ll=

CouT EQUALS...

25

08DA:
08DC:
08DE:
08EO0:

08E3:
08ES5:
08E7:
08EA:
08EC:

08EF:
08F1:
08F4:

08F7:
08F9:
08FB:
08FD:
08FF:
0901:
0904:
0906 :
0909:
090B:
090D:
0910:
0912:
0913:
0914:
0915:
0918:
091A:
091cC:
091E:
0921:
0923:
0926
0927:
0928:
0929:
092B:
092D:

092E:

0930:
0933:
093B:
093E:

FF

4C
c2
4C
Cl

00

53
5C

50
51
F7
8D
ED

1E
33

00
3C
02
3D
A0
30

00
A0
1B
ED
OF

05
D9

F3

00
D4
00
D4

09

08

FD

09
08

09
02

FD

09

09
0

00
CF

00

CF

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
l46
147
148
149
150
151
152
153
154
155
156
157

158

FORMAT

FORMLP

FORM1

*

BTOA

ATOB

LDA
STA
STA
JSR

LDY
LDA
JSR
LDA
JSR

LDA
JSR
JMP

#0 SET HI PART
AC+2 TO ZERO

AC+3

MULT "AUX*AC

AC

AC+1

FORMAT PRINT ANSWER
#RETURN NEW LINE

CcouT

#30 WAIT 3 SECONDS
DELAY

DEMO1 THEN START ALL OVER

FORMAT: PRINT A BINARY NUMBER

LDX.
STX
LDX
STX
LDX
JSR
LDX
LDA
CMP
BEQ
JSR
AND
TAY
TXA
PHA
LDA
STA
LDA
STA
JSR
LDA
JSR
PLA
TAX
INX
CPX
BCC
RTS

#<IN WHERE TO PUT OUTPUT
Al

#>IN

Al+l

#" : FILL WITH BLANKS
BTOA Y,A ALREADY LOADED
#0 START OUTPUT LOOP
IN,X ‘GET A CHAR

#" BLANK?

FORM1 YES, SKIP IT

cout

#SOF CONVERT DIGIT

SAVE XREG

TONTAB,Y GET TONE VALUE

Al PASS AS FREQ

#30

Al+l DURATION FOR TONE
TONE

#1 WAIT 1/10 SECOND
DELAY

RESTORE XREG

#5 END?
FORMLP

GLOBALS

HEX

JMP
ASC
JMP
ASC

FFF3

$0
"BTOA "
$0
L ATOB L]

26

APPENDIX B = PROBLEMS OR QUESTIONS

We hope you find LINKER a useful and reliable product. |+ has been carefully designed
and tested but with every product there is always the possibility that there are
minor or esoteric bugs. Naturally, we want to keep LINKER as bug free as possible,
so, should you uncover one, please fill out the form below and mail it to us. We will
look into the problem you are having and get back to you with a fix if at all
possible. |f you just have a question on the use of LINKER or on any of Its
subroutihes, feel free to send the form in with your questions and we will try tfo
answer them for you. Should we make any significant changes to LINKER or Its
subroutine Ilibrary, we will issue a new version of the program. To insure that you
are kept abreast of such updates, please mail the enclosed postage paid postcard with
you name and address and the word LINKER printed on it.

LINKER PROBLEM REPORT

NAME :

ADDRESS:

MACHINE MEMORY SIZE: K NUMBER OF DISK DRIVES:
OTHER DEVICES:

VERSION OF DOS BEING USED:

PLEASE DESCRIBE YOUR PROBLEM/QUESTION BELOW:

MAIL THIS COMPLETED FORM TO

DON WORTH

THE SOFTWARE FACTORY
PO BOX 904
CHATSWORTH, CA 91311

IF POSSIBLE, |INCLUDE A PRINTER LISTING AND/OR A DISKETTE CONTAINING YOUR FAILING
PROGRAM,

28

APPENDIX C =

K

MODULE HEADER

JMP NAME
ASC "NAME "
HEX 0000
HEX 0000

INSTRUCTIONS SEGMENT

HEX FFF1
JSR ASUB
JSR ZSUB

DATA SEGMENT

HEX FFF4

OBJECT MODULE STRUCTURE SUMMARY

JUMP TO ENTRY POINT
GLOBAL NAME OF CSECT
LINK VALUE
USE COUNT

INSTRUCTIONS

DATA

ADDRESS CONSTANTS SEGMENT

HEX FFF2
DA A
DA Z

GLOBALS SEGMENT

HEX FFF3

JMP $0

ASC "ASUB "
JMP $0

ASC "7SUB "
END OF CSECT

HEX FFFO

FIRST ADCON

LAST ADCON-

FIRST GLOBAL REFERENCE

LAST GLOBAL REFERENCE

29

